Inggeol Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
“Killing Me” Is Not a Spoiler: Spoiler Detection Model using Graph Neural Networks with Dependency Relation-Aware Attention Mechanism
Buru Chang | Inggeol Lee | Hyunjae Kim | Jaewoo Kang
Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume

Several machine learning-based spoiler detection models have been proposed recently to protect users from spoilers on review websites. Although dependency relations between context words are important for detecting spoilers, current attention-based spoiler detection models are insufficient for utilizing dependency relations. To address this problem, we propose a new spoiler detection model called SDGNN that is based on syntax-aware graph neural networks. In the experiments on two real-world benchmark datasets, we show that our SDGNN outperforms the existing spoiler detection models.