Ikram Belmadani


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Adaptation des connaissances médicales pour les grands modèles de langue : Stratégies et analyse comparative
Ikram Belmadani | Benoit Favre | Richard Dufour | Frédéric Béchet | Carlos Ramisch
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : articles scientifiques originaux

Cet article présente une étude sur l’adaptation des grands modèles de langue (LLMs) à des domaines spécialisés disposant de données limitées. Bien que certaines recherches remettent en question le pré-entraînement adaptatif (DAPT) dans le contexte médical en anglais, nous montrons que l’adaptation au domaine peut être efficace sous certaines conditions. En prenant comme exemple l’adaptation au domaine médical en français, nous comparons de manière systématique le pré-entraînement continu (CPT), l’affinage supervisé (SFT) et une approche combinée (CPT suivi de SFT). Nos résultats indiquent que l’adaptation d’un modèle généraliste à de nouvelles données dans le domaine médical offre des améliorations notables (taux de réussite de 87%), tandis que l’adaptation supplémentaire de modèles déjà familiarisés avec ce domaine procure des bénéfices limités. Bien que CPT+SFT offre les meilleures performances globales, SFT-seul présente des résultats solides et requiert moins de ressources matérielles.