Ignacio Arranz


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
MMG at SemEval-2022 Task 1: A Reverse Dictionary approach based on a review of the dataset from a lexicographic perspective
Alfonso Ardoiz | Miguel Ortega-Martín | Óscar García-Sierra | Jorge Álvarez | Ignacio Arranz | Adrián Alonso
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

This paper presents a novel and linguistic-driven system for the Spanish Reverse Dictionary task of SemEval-2022 Task 1. The aim of this task is the automatic generation of a word using its gloss. The conclusion is that this task results could improve if the quality of the dataset did as well by incorporating high-quality lexicographic data. Therefore, in this paper we analyze the main gaps in the proposed dataset and describe how these limitations could be tackled.