Ibai Guillén-Pacho


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
The Vulnerable Identities Recognition Corpus (VIRC) for Hate Speech Analysis
Ibai Guillén-Pacho | Arianna Longo | Marco Antonio Stranisci | Viviana Patti | Carlos Badenes-Olmedo
Proceedings of the Tenth Italian Conference on Computational Linguistics (CLiC-it 2024)

This paper presents the Vulnerable Identities Recognition Corpus (VIRC), a novel resource designed to enhance hate speech analysis in Italian and Spanish news headlines. VIRC comprises 921 headlines, manually annotated for vulnerable identities, dangerous discourse, derogatory expressions, and entities. Our experiments reveal that large language models (LLMs) struggle significantly with the fine-grained identification of these elements, underscoring the complexity of detecting hate speech. VIRC stands out as the first resource of its kind in these languages, offering a richer annotation schema compared to existing corpora. The insights derived from VIRC can inform the development of sophisticated detection tools and the creation of policies and regulations to combat hate speech on social media, promoting a safer online environment. Future work will focus on expanding the corpus and refining annotation guidelines to further enhance its comprehensiveness and reliability.