Ian Bulovic


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Using tournaments to calculate AUROC for zero-shot classification with LLMs
WonJin Yoon | Ian Bulovic | Timothy A. Miller
Findings of the Association for Computational Linguistics: EMNLP 2025

Large language models perform surprisingly well on many zero-shot classification tasks, but are difficult to fairly compare to supervised classifiers due to the lack of a modifiable decision boundary. In this work, we propose and evaluate a method that transforms binary classification tasks into pairwise comparisons between instances within a dataset, using LLMs to produce relative rankings of those instances. Repeated pairwise comparisons can be used to score instances using the Elo rating system (used in chess and other competitions), inducing a confidence ordering over instances in a dataset. We evaluate scheduling algorithms for their ability to minimize comparisons, and show that our proposed algorithm leads to improved classification performance, while also providing more information than traditional zero-shot classification.