Hyeonseo Nam


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Typed-RAG: Type-Aware Decomposition of Non-Factoid Questions for Retrieval-Augmented Generation
DongGeon Lee | Ahjeong Park | Hyeri Lee | Hyeonseo Nam | Yunho Maeng
Proceedings of the 1st Joint Workshop on Large Language Models and Structure Modeling (XLLM 2025)

Non-factoid question answering (NFQA) poses a significant challenge due to its open-ended nature, diverse intents, and the necessity for multi-aspect reasoning, rendering conventional retrieval-augmented generation (RAG) approaches insufficient. To address this, we introduce Typed-RAG, a type-aware framework utilizing multi-aspect query decomposition tailored specifically for NFQA. Typed-RAG categorizes NFQs into distinct types—such as debate, experience, and comparison—and decomposes them into single-aspect sub-queries for targeted retrieval and generation. By synthesizing the retrieved results of these sub-queries, Typed-RAG generates more informative and contextually relevant responses. Additionally, we present Wiki-NFQA, a novel benchmark dataset encompassing diverse NFQ types. Experimental evaluation demonstrates that TypeRAG consistently outperforms baseline approaches, confirming the effectiveness of type-aware decomposition in improving both retrieval quality and answer generation for NFQA tasks.