Hyeongjun Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
CLICK: Contrastive Learning for Injecting Contextual Knowledge to Conversational Recommender System
Hyeongjun Yang | Heesoo Won | Youbin Ahn | Kyong-Ho Lee
Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics

Conversational recommender systems (CRSs) capture a user preference through a conversation. However, the existing CRSs lack capturing comprehensive user preferences. This is because the items mentioned in a conversation are mainly regarded as a user preference. Thus, they have limitations in identifying a user preference from a dialogue context expressed without preferred items. Inspired by the characteristic of an online recommendation community where participants identify a context of a recommendation request and then comment with appropriate items, we exploit the Reddit data. Specifically, we propose a Contrastive Learning approach for Injecting Contextual Knowledge (CLICK) from the Reddit data to the CRS task, which facilitates the capture of a context-level user preference from a dialogue context, regardless of the existence of preferred item-entities. Moreover, we devise a relevance-enhanced contrastive learning loss to consider the fine-grained reflection of multiple recommendable items. We further develop a response generation module to generate a persuasive rationale for a recommendation. Extensive experiments on the benchmark CRS dataset show the effectiveness of CLICK, achieving significant improvements over state-of-the-art methods.