Huy Hoang Ha


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Pensez: Moins de données, meilleur raisonnement – Repenser les LLM français
Huy Hoang Ha
Actes des 32ème Conférence sur le Traitement Automatique des Langues Naturelles (TALN), volume 1 : articles scientifiques originaux

Les grands modèles linguistiques (LLM) ont démontré des capacités remarquables dans diverses tâches de traitement automatique du langage naturel. Cependant, l’obtention de performances élevées dans des domaines spécialisés tels que le raisonnement mathématique et les langues autres que l’anglais nécessite souvent un entraînement intensif. Cet article étudie l’affinage stratégique sur un petit ensemble de données bilingue de haute qualité, afin d’améliorer à la fois les capacités de raisonnement et la maîtrise de la langue française d’un LLM. Nous démontrons des améliorations du raisonnement mathématique en utilisant seulement 2000 échantillons soigneusement sélectionnés. Ces résultats remettent en question l’hypothèse dominante selon laquelle des ensembles de données massifs sont une condition préalable à de solides performances de raisonnement pour les LLM.