Huiying Cao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TOOL-ED: Enhancing Empathetic Response Generation with the Tool Calling Capability of LLM
Huiying Cao | Yiqun Zhang | Shi Feng | Xiaocui Yang | Daling Wang | Yifei Zhang
Proceedings of the 31st International Conference on Computational Linguistics

Empathetic conversation is a crucial characteristic in daily conversations between individuals. Nowadays, Large Language models (LLMs) have shown outstanding performance in generating empathetic responses. Knowledge bases like COMET can assist LLMs in mitigating illusions and enhancing the understanding of users’ intentions and emotions. However, models remain heavily reliant on fixed knowledge bases and unrestricted incorporation of external knowledge can introduce noise. Tool learning is a flexible end-to-end approach that assists LLMs in handling complex problems. In this paper, we propose Emotional Knowledge Tool Calling (EKTC) framework, which encapsulates the commonsense knowledge bases as empathetic tools, enabling LLMs to integrate external knowledge flexibly through tool calling. In order to adapt the models to the new task, we construct a novel dataset TOOL-ED based on the EMPATHETICDIALOGUE (ED) dataset. We validate EKTC on the ED dataset, and the experimental results demonstrate that our framework can enhance the ability of LLMs to generate empathetic responses effectively. Our code is available at https://anonymous.4open.science/r/EKTC-3FEF.