Huinan Xu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
TeleChat: An Open-source Billingual Large Language Model
Zihan Wang | XinZhang Liu | Shixuan Liu | Yitong Yao | Yunyao Huang | Mengxiang Li | Zhongjiang He | Yongxian Li | Luwen Pu | Huinan Xu | Chao Wang | Shuangyong Song
Proceedings of the 10th SIGHAN Workshop on Chinese Language Processing (SIGHAN-10)

In this paper, we present TeleChat, a collection of large language models (LLMs) with parameters of 7 billion and 12 billion. TeleChat is initially pretrained on an extensive corpus containing a diverse collection of texts from both English and Chinese languages, encompassing trillions of tokens. Subsequently, the model undergoes fine-tuning to align with human preferences, following a detailed methodology that we describe. We evaluate the performance of TeleChat on various tasks, including general dialogue generation, language understanding, mathematics, reasoning, code generation, and knowledge-based question answering. Our findings indicate that TeleChat achieves state-of-the-art performance to other open-source models of similar size across a wide range of public benchmarks. To support future research and applications utilizing LLMs, we release the fine-tuned model checkpoints of TeleChat-7B and TeleChat-12B, along with code and a portion of our filtered high-quality pretraining data, to the public community.