This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HuiFang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
It is well known that rerankers built on pretrained transformer models such as BERT have dramatically improved retrieval effectiveness in many tasks. However, these gains have come at substantial costs in terms of efficiency, as noted by many researchers. In this work, we show that it is possible to retain the benefits of transformer-based rerankers in a multi-stage reranking pipeline by first using feature-based learning-to-rank techniques to reduce the number of candidate documents under consideration without adversely affecting their quality in terms of recall. Applied to the MS MARCO passage and document ranking tasks, we are able to achieve the same level of effectiveness, but with up to 18× increase in efficiency. Furthermore, our techniques are orthogonal to other methods focused on accelerating transformer inference, and thus can be combined for even greater efficiency gains. A higher-level message from our work is that, even though pretrained transformers dominate the modern IR landscape, there are still important roles for “traditional” LTR techniques, and that we should not forget history.
We present Covidex, a search engine that exploits the latest neural ranking models to provide information access to the COVID-19 Open Research Dataset curated by the Allen Institute for AI. Our system has been online and serving users since late March 2020. The Covidex is the user application component of our three-pronged strategy to develop technologies for helping domain experts tackle the ongoing global pandemic. In addition, we provide robust and easy-to-use keyword search infrastructure that exploits mature fusion-based methods as well as standalone neural ranking models that can be incorporated into other applications. These techniques have been evaluated in the multi-round TREC-COVID challenge: Our infrastructure and baselines have been adopted by many participants, including some of the best systems. In round 3, we submitted the highest-scoring run that took advantage of previous training data and the second-highest fully automatic run. In rounds 4 and 5, we submitted the highest-scoring fully automatic runs.