Hugo Brochelard


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Flan-T5 avec ou sans contexte, telle est la question à choix multiples
Elias Okat | Hugo Brochelard | Aghilas Sini | Valérie Renault | Nathalie Camelin
Actes du Défi Fouille de Textes@TALN 2024

Ce travail présente les systèmes développés par l’équipe LIUM-CREN pour l’atelier DEFT 2024. Nous avons participé à la tâche principale qui vise à inférer automatiquement les réponses correctes à des questions à choix multiples dans le domaine médical en utilisant le corpus FrenchMedMCQA. Nous avons soumis trois approches : (a) explorer l’espace de plongements afin de mettre en évidence les liens éventuels entre les questions et les réponses associées ; (b) utiliser la capacité de génération des modèles Text-To-Text tels que Flan-T5-Large pour générer les réponses correctes ; et (c) mettre en place une technique basique de Retrieval Augmented Generation (RAG) afin de fournir du contexte spécifique au modèle génératif Flan-T5-Large. Cet article vise à rapporter les résultats que nous avons obtenus et à étudier l’impact du contexte sur la capacité du Flan-T5 à inférer les réponses correctes.