This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HuaxiuYao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) integrated into multi-step agent systems enable complex decision-making processes across various applications. However, their outputs often lack reliability, making uncertainty estimation crucial. Existing uncertainty estimation methods primarily focus on final-step outputs, which fail to account for cumulative uncertainty over the multi-step decision-making process and the dynamic interactions between agents and their environments. To address these limitations, we propose SAUP (Situation Awareness Uncertainty Propagation), a novel framework that propagates uncertainty through each step of an LLM-based agent’s reasoning process. SAUP incorporates situational awareness by assigning situational weights to each step’s uncertainty during the propagation. Our method, compatible with various one-step uncertainty estimation techniques, provides a comprehensive and accurate uncertainty measure. Extensive experiments on benchmark datasets demonstrate that SAUP significantly outperforms existing state-of-the-art methods, achieving up to 20% improvement in AUROC.
Current Large Language Models excel in general reasoning yet struggle with specialized tasks requiring proprietary or domain-specific knowledge. Fine-tuning large models for every niche application is often infeasible due to black-box constraints and high computational overhead. To address this, we propose a collaborative framework that pairs a specialized weak model with a general strong model. The weak model, tailored to specific domains, produces initial drafts and background information, while the strong model leverages its advanced reasoning to refine these drafts, extending LLMs’ capabilities to critical yet specialized tasks. To optimize this collaboration, we introduce a collaborative feedback to fine-tunes the weak model, which quantifies the influence of the weak model’s contributions in the collaboration procedure and establishes preference pairs to guide preference tuning of the weak model. We validate our framework through experiments on three domains. We find that the collaboration significantly outperforms each model alone by leveraging complementary strengths. Moreover, aligning the weak model with the collaborative preference further enhances overall performance.
The computational complexity of large language model (LLM) inference significantly constrains their deployment efficiency on edge devices. In contrast, small language models offer faster decoding and lower resource consumption but often suffer from degraded response quality and heightened susceptibility to hallucinations. To address this trade-off, collaborative decoding, in which a large model assists in generating critical tokens, has emerged as a promising solution. This paradigm leverages the strengths of both model types by enabling high-quality inference through selective intervention of the large model, while maintaining the speed and efficiency of the smaller model. In this work, we present a novel collaborative decoding inference system that allows small models to perform on-device inference while selectively consulting a cloud-based large model for critical token generation. Remarkably, the system achieves a 60% performance gain on CommonsenseQA using only a 0.5B model on an M1 MacBook, with under 7% of tokens generation uploaded to the large model in the cloud.
The emergence of large Vision Language Models (VLMs) has broadened the scope and capabilities of single-modal Large Language Models (LLMs) by integrating visual modalities, thereby unlocking transformative cross-modal applications in a variety of real-world scenarios. Despite their impressive performance, VLMs are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies. Building on the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs, recent advancements have focused on applying direct preference optimization (DPO) on carefully curated datasets to mitigate these issues. Yet, such approaches typically introduce preference signals in a brute-force manner, neglecting the crucial role of visual information in the alignment process. In this paper, we introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset, effectively incorporating both textual and visual preference signals. We further introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning. Our experimental results demonstrate that Re-Align not only mitigates hallucinations more effectively than previous methods but also yields significant performance gains in general visual question-answering (VQA) tasks. Moreover, we show that Re-Align maintains robustness and scalability across a wide range of VLM sizes and architectures. This work represents a significant step forward in aligning multimodal LLMs, paving the way for more reliable and effective cross-modal applications.
Existing video benchmarks often resemble image-based benchmarks, with question types like “What actions does the person perform throughout the video?” or “What color is the woman’s dress in the video?” For these, models can often answer by scanning just a few key frames, without deep temporal reasoning. This limits our ability to assess whether large vision-language models (LVLMs) can truly think with videos rather than perform superficial frame-level analysis. To address this, we introduce , a benchmark specifically designed to evaluate whether LVLMs can genuinely think with videos. Unlike prior benchmarks, emphasizes comprehensive video understanding beyond static image cues. It consists of 3,269 videos and over 4,342 highly visual-centric questions across 11 categories, including Trajectory Analysis, Temporal Reasoning, and Forensics Detection. All questions are carefully crafted by human annotators and require watching the entire video and reasoning over full video context—this is what we mean by thinking with video. These questions cannot be answered by scanning selected frames or relying on text alone. In human evaluations, achieves 94.82% accuracy, but current LVLMs face significant challenges. Even the best-performing model, GPT-o3, reaches only 66.43%, highlighting that LVLMs still struggle to move beyond surface-level reasoning to truly think with videos. We publicly release our benchmark and code at https://github.com/aiming-lab/GLIMPSE.
Large vision-language models (LVLMs) have achieved impressive results in visual question-answering and reasoning tasks through vision instruction tuning on specific datasets. However, there remains significant room for improvement in aligning visual and language modalities. Existing methods often depend on external models or data, leading to uncontrollable and unstable alignment results. In this paper, we propose SIMA, a self-improvement framework that enhances visual and language modality alignment without external dependencies. SIMA leverages existing vision instruction tuning datasets to self-generate responses, incorporating an in-context self-critic mechanism that constructs preference pairs for tuning. Crucially, our approach allows LVLMs to act as critics by designing effective critic prompts, eliminating the need for additional fine-tuning with external instruction data. We introduce three novel visual metrics within the self-critic process to guide judgement, significantly improving the accuracy of self-critic. Through extensive experiments across 14 hallucination and comprehensive benchmarks, we demonstrate that SIMA significantly improves LVLM’s performance and outperforms previous approaches, achieving superior modality alignment.
Recent Large Language Models (LLMs) have demonstrated satisfying general instruction following ability. However, small LLMs with about 7B parameters still struggle fine-grained format following (e.g., JSON format), which seriously hinder the advancements of their applications. Most existing methods focus on benchmarking general instruction following while overlook how to improve the specific format following ability for small LLMs. Besides, these methods often rely on evaluations based on advanced LLMs (e.g., GPT-4), which can introduce the intrinsic bias of LLMs and be costly due to the API calls. In this paper, we first curate a fully verifiable format following dataset VFF. In contrast to existing works often adopting external LLMs for instruction-following validations, every sample of VFF can be easily validated with a Python function. Further, we propose to leverage this verifiable feature to synthesize massive data for progressively training small LLMs, in order to improve their format following abilities. Experimental results highlight the prevalent limitations in the format following capabilities of 7B level open-source LLMs and demonstrate the effectiveness of our method in enhancing this essential ability.
Reward modeling in large language models is known to be susceptible to reward hacking, causing models to latch onto superficial features such as the tendency to generate lists or unnecessarily long responses. In RLHF, and more generally during post-training, flawed reward signals often lead to outputs that optimize for these spurious correlates instead of genuine quality or correctness. We propose **Carmo (Context-Aware Reward Modeling)**, a novel approach that first generates dynamic, context-relevant criteria to ground the reward model prior to producing reward scores. Unlike prior methods that use static rubrics, Carmo leverages powerful LLMs to adaptively create evaluation criteria, e.g., logical consistency, clarity, and depth, tailored to the user query. Our theoretical analysis shows that such criteria generation can mitigate reward hacking. We further demonstrate how Carmo can be distilled into smaller models, thereby lowering the computational cost of alignment. We establish a new state-of-the-art performance on zero shot setting for generative models, with a 2.1% improvement on Reward Bench. Furthermore, alignment performed on the Carmo-curated preference dataset achieves **22.5% and 21.1% LC-WR (%) and WR (%) on Mistral-Base (7B)**. We release our datasets at [huggingface/CARMO](https://huggingface.co/datasets/Multi-preference-Optimization/CARMO-UltraFeedback).
Electrocardiogram (ECG) is the primary non-invasive diagnostic tool for monitoring cardiac conditions and is crucial in assisting clinicians. Recent studies have concentrated on classifying cardiac conditions using ECG data but have overlooked ECG report generation, which is time-consuming and requires clinical expertise. To automate ECG report generation and ensure its versatility, we propose the Multimodal ECG Instruction Tuning (MEIT) framework, the first attempt to tackle ECG report generation with LLMs and multimodal instructions. To facilitate future research, we establish a benchmark to evaluate MEIT with various LLMs backbones across two large-scale ECG datasets. Our approach uniquely aligns the representations of the ECG signal and the report, and we conduct extensive experiments to benchmark MEIT with nine open-source LLMs using more than 800,000 ECG reports. MEIT’s results underscore the superior performance of instruction-tuned LLMs, showcasing their proficiency in quality report generation, zero-shot capabilities, resilience to signal perturbation, and alignment with human expert evaluation. These findings emphasize the efficacy of our MEIT framework and its potential for real-world clinical application.
Clinical trials are pivotal yet costly processes, often spanning multiple years and requiring substantial expenses, motivating predictive models to identify likely-to-fail drugs early and save resources. Recent approaches leverage deep learning to integrate multimodal data for clinical outcome prediction; however, they rely heavily on manually designed modality-specific encoders, limiting their adaptability to new modalities and ability to effectively share information across modalities. To address these challenges, we propose a multimodal mixture-of-experts (LIFTED) framework. Specifically, LIFTED transforms modality-specific data into natural language descriptions, encoded via unified, noise-resilient encoders. A sparse Mixture-of-Experts mechanism then identifies shared patterns across modalities, extracting consistent representations. Finally, another mixture-of-experts module dynamically integrates these modality representations, emphasizing critical information. Experiments show that LIFTED significantly outperforms baseline methods in predicting clinical trial outcomes across all phases, highlighting the effectiveness of our proposed approach.
The rapid advancements in Large Language Models (LLMs) and Large Visual-Language Models (LVLMs) have opened up new opportunities for integrating visual and linguistic modalities. Yet, challenges remain in aligning these modalities effectively, causing issues such as hallucinations, where generated outputs are not grounded in the visual input, and safety concerns in the application of LVLMs across various domains. Existing alignment methods, such as instruction tuning and preference tuning, often rely on external datasets, human annotations, or complex post-processing, which limit scalability and introduce additional costs. To address these challenges, we propose a novel approach that generates the debiased self-judgment score, a self-evaluation metric created internally by the model without relying on external resources. This enables the model to autonomously improve alignment. Our method enhances both decoding strategies and preference tuning processes, resulting in improved alignment, reduced hallucinations, and enhanced safety. Empirical results show that our approach significantly outperforms traditional methods, offering a more effective solution for aligning LVLMs.
Multimodal Large Language Models (MLLMs) have demonstrated proficiency in handling a variety of visual-language tasks. However, current MLLM benchmarks are predominantly designed to evaluate reasoning based on static information about a single image, and the ability of modern MLLMs to extrapolate from image sequences, which is essential for understanding our ever-changing world, has been less investigated. To address this challenge, this paper introduces Mementos, a new benchmark designed to assess MLLMs’ sequential image reasoning abilities. Mementos features 4,761 diverse image sequences with varying lengths. We also employ a GPT-4 assisted method to evaluate MLLM reasoning performance. Through a careful evaluation of nine recent MLLMs on Mementos, including GPT-4V and Gemini, we find that they struggle to accurately describe dynamic information about given image sequences, often leading to hallucinations/misrepresentations of objects and their corresponding behaviors. Our quantitative analysis and case studies identify three key factors impacting MLLMs’ sequential image reasoning: the correlation between object and behavioral hallucinations, the influence of co-occurring behaviors, and the compounding impact of behavioral hallucinations.
The recent emergence of Medical Large Vision Language Models (Med-LVLMs) has enhanced medical diagnosis. However, current Med-LVLMs frequently encounter factual issues, often generating responses that do not align with established medical facts. Retrieval-Augmented Generation (RAG), which utilizes external knowledge, can improve the factual accuracy of these models but introduces two major challenges. First, limited retrieved contexts might not cover all necessary information, while excessive retrieval can introduce irrelevant and inaccurate references, interfering with the model’s generation. Second, in cases where the model originally responds correctly, applying RAG can lead to an over-reliance on retrieved contexts, resulting in incorrect answers. To address these issues, we propose RULE, which consists of two components. First, we introduce a provably effective strategy for controlling factuality risk through the calibrated selection of the number of retrieved contexts. Second, based on samples where over-reliance on retrieved contexts led to errors, we curate a preference dataset to fine-tune the model, balancing its dependence on inherent knowledge and retrieved contexts for generation. We demonstrate the effectiveness of RAFE on three medical VQA datasets, achieving an average improvement of 20.8% in factual accuracy.
Recent advancements in large language models (LLMs) have shown promise in multi-step reasoning tasks, yet their reliance on extensive manual labeling to provide procedural feedback remains a significant impediment. To address this challenge, in this paper, we propose a novel self-supervised framework **AutoPRM** that efficiently enhances the fine-tuning of LLMs for intricate reasoning challenges. Specifically, **AutoPRM** first decomposes complex problems into more manageable subquestions with a controllable granularity switch, then sequentially apply reinforcement learning to iteratively improve the subquestion solver. Additionally, we propose context-guided decoding to avoid reward tampering and guide the subquestion solver towards the solution of the holistic problem. Extensive experiments show that **AutoPRM** significantly improves performance on mathematical and commonsense reasoning tasks over SOTA. More encouragingly, **AutoPRM** can be easily integrated with other orthogonal reasoning pipelines.
Recently, there has been a growing focus on conducting attacks on large language models (LLMs) to assess LLMs’ safety. Yet, existing attack methods face challenges, including the need to access model weights or merely ensuring LLMs output harmful information without controlling the specific content of their output. Exactly control of the LLM output can produce more inconspicuous attacks which could reveal a new page for LLM security. To achieve this, we propose RLTA: the Reinforcement Learning Targeted Attack, a framework that is designed for attacking language models (LLMs) and is adaptable to both white box (weight accessible) and black box (weight inaccessible) scenarios. It is capable of automatically generating malicious prompts that trigger target LLMs to produce specific outputs. We demonstrate RLTA in two different scenarios: LLM trojan detection and jailbreaking. The comprehensive experimental results show the potential of RLTA in enhancing the security measures surrounding contemporary LLMs.
A trustworthy real-world prediction system should produce well-calibrated confidence scores; that is, its confidence in an answer should be indicative of the likelihood that the answer is correct, enabling deferral to an expert in cases of low-confidence predictions. Recent studies have shown that unsupervised pre-training produces large language models (LMs) whose conditional probabilities are remarkably well-calibrated. However, the most widely-used LMs are fine-tuned with reinforcement learning from human feedback (RLHF-LMs), and some studies have suggested that RLHF-LMs produce conditional probabilities that are very poorly calibrated. In light of this perceived weakness, we conduct a broad evaluation of methods for extracting confidence scores from RLHF-LMs. For RLHF-LMs such as ChatGPT, GPT-4, and Claude, we find that verbalized confidences emitted as output tokens are typically better-calibrated than the model’s conditional probabilities on the TriviaQA, SciQ, and TruthfulQA benchmarks, often reducing the expected calibration error by a relative 50%.
Cross-lingual natural language understanding(NLU) is one of the fundamental tasks of NLP. The goal is to learn a model which can generalize well on both high-resource and low-resource language data. Recent pre-trained multilingual language models, e.g., multilingual BERT, XLM, have shown impressive performance on cross-lingual NLU tasks. However, such promising results request the use of sufficient training data, which is a difficult condition to satisfy for low-resource language. When the data is limited in those low resource languages, the accuracy of existing models will drop. In light of this challenge, we investigate the important task of how to train the cross-lingual model with abundant high-source language data and limited low-resource language data. Existing methods typically learn language-agnostic representation via adversarial training and mutual information estimation. Existing approaches may suffer When data is very limited (e.g., low-resource language) because it is challenging to estimate data distribution accurately. To tackle this issue, we propose a conceptually innovative approach to remove language-associated information via minimizing representation coding rate reduction(Macedon). Specifically, Macedon avoids using extra codes to encode language-related information, which is measured by the rate-distortion function. To validate the effectiveness of Macedon, we conduct extensive experiments on three tasks, including paraphrase identification, natural language inference, and query advertisement matching. The experiment results show that the proposed Macedon outperforms state-of-the-art cross-lingual NLU approaches.
Building models of natural language processing (NLP) is challenging in low-resource scenarios where limited data are available. Optimization-based meta-learning algorithms achieve promising results in low-resource scenarios by adapting a well-generalized model initialization to handle new tasks. Nonetheless, these approaches suffer from the memorization overfitting issue, where the model tends to memorize the meta-training tasks while ignoring support sets when adapting to new tasks. To address this issue, we propose a memory imitation meta-learning (MemIML) method that enhances the model’s reliance on support sets for task adaptation. Specifically, we introduce a task-specific memory module to store support set information and construct an imitation module to force query sets to imitate the behaviors of support sets stored in the memory. A theoretical analysis is provided to prove the effectiveness of our method, and empirical results also demonstrate that our method outperforms competitive baselines on both text classification and generation tasks.
Meta-learning has achieved great success in leveraging the historical learned knowledge to facilitate the learning process of the new task. However, merely learning the knowledge from the historical tasks, adopted by current meta-learning algorithms, may not generalize well to testing tasks when they are not well-supported by training tasks. This paper studies a low-resource text classification problem and bridges the gap between meta-training and meta-testing tasks by leveraging the external knowledge bases. Specifically, we propose KGML to introduce additional representation for each sentence learned from the extracted sentence-specific knowledge graph. The extensive experiments on three datasets demonstrate the effectiveness of KGML under both supervised adaptation and unsupervised adaptation settings.