Huaqin Zhao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
HELENE: Hessian Layer-wise Clipping and Gradient Annealing for Accelerating Fine-tuning LLM with Zeroth-order Optimization
Huaqin Zhao | Jiaxi Li | Yi Pan | Shizhe Liang | Xiaofeng Yang | Fei Dou | Tianming Liu | Jin Lu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Fine-tuning large language models (LLMs) faces significant memory challenges due to the high cost of back-propagation. MeZO addresses this using zeroth-order (ZO) optimization, matching memory usage to inference but suffering from slow convergence due to varying curvatures across model parameters. To overcome this limitation, We propose HELENE, a scalable and memory-efficient optimizer that integrates annealed A-GNB gradients with diagonal Hessian estimation and layer-wise clipping as a second-order pre-conditioner. HELENE provably accelerates and stabilizes convergence by reducing dependence on total parameter space and scaling with the largest layer dimension. Experiments on RoBERTa-large and OPT-1.3B show up to a 20× speedup over MeZO with an average accuracy improvement of 1.5%. HELENE supports full and parameter-efficient fine-tuning, outperforming several state-of-the-art optimizers.