Huapu Pan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Zero-shot Entity Linking with Efficient Long Range Sequence Modeling
Zonghai Yao | Liangliang Cao | Huapu Pan
Findings of the Association for Computational Linguistics: EMNLP 2020

This paper considers the problem of zero-shot entity linking, in which a link in the test time may not present in training. Following the prevailing BERT-based research efforts, we find a simple yet effective way is to expand the long-range sequence modeling. Unlike many previous methods, our method does not require expensive pre-training of BERT with long position embeddings. Instead, we propose an efficient position embeddings initialization method called Embedding-repeat, which initializes larger position embeddings based on BERT-Base. On the zero-shot entity linking dataset, our method improves the STOA from 76.06% to 79.08%, and for its long data, the corresponding improvement is from 74.57% to 82.14%. Our experiments suggest the effectiveness of long-range sequence modeling without retraining the BERT model.