Huaming Liao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
QUITO-X: A New Perspective on Context Compression from the Information Bottleneck Theory
Yihang Wang | Xu Huang | Bowen Tian | Yueyang Su | Lei Yu | Huaming Liao | Yixing Fan | Jiafeng Guo | Xueqi Cheng
Findings of the Association for Computational Linguistics: EMNLP 2025

Generative large language models ( LLMs) have achieved remarkable success in various industrial applications, owing to their promising In-Context Learning capabilities. However, the issue of long context in complex tasks poses a significant barrier to their wider adoption, manifested in two main aspects: (i) The excessively long context leads to high costs and inference delays. (ii) A substantial amount of task-irrelevant information introduced by long contexts exacerbates the “lost in the middle” problem. Existing methods compress context by removing redundant tokens using metrics such as self-information or perplexity ( PPL ), which is inconsistent with the objective of retaining the most important tokens when conditioning on a given query. In this study, we introduce information bottleneck theory (IB) to model the problem, offering a novel perspective that thoroughly addresses the essential properties required for context compression. Additionally, we propose a cross-attention-based approach to approximate mutual information in IB, which can be flexibly replaced with suitable alternatives in different scenarios. Extensive experiments on four datasets demonstrate that our method achieves a 25% increase in compression rate compared to the state-of-the-art, while maintaining question answering performance. In particular, the context compressed by our method even outperform the full context in some cases.

2022

pdf bib
CofeNet: Context and Former-Label Enhanced Net for Complicated Quotation Extraction
Yequan Wang | Xiang Li | Aixin Sun | Xuying Meng | Huaming Liao | Jiafeng Guo
Proceedings of the 29th International Conference on Computational Linguistics

Quotation extraction aims to extract quotations from written text. There are three components in a quotation: source refers to the holder of the quotation, cue is the trigger word(s), and content is the main body. Existing solutions for quotation extraction mainly utilize rule-based approaches and sequence labeling models. While rule-based approaches often lead to low recalls, sequence labeling models cannot well handle quotations with complicated structures. In this paper, we propose the Context and Former-Label Enhanced Net () for quotation extraction. is able to extract complicated quotations with components of variable lengths and complicated structures. On two public datasets (and ) and one proprietary dataset (), we show that our achieves state-of-the-art performance on complicated quotation extraction.