Huaijin Deng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Integrating Disfluency-based and Prosodic Features with Acoustics in Automatic Fluency Evaluation of Spontaneous Speech
Huaijin Deng | Youchao Lin | Takehito Utsuro | Akio Kobayashi | Hiromitsu Nishizaki | Junichi Hoshino
Proceedings of the Twelfth Language Resources and Evaluation Conference

This paper describes an automatic fluency evaluation of spontaneous speech. In the task of automatic fluency evaluation, we integrate diverse features of acoustics, prosody, and disfluency-based ones. Then, we attempt to reveal the contribution of each of those diverse features to the task of automatic fluency evaluation. Although a variety of different disfluencies are observed regularly in spontaneous speech, we focus on two types of phenomena, i.e., filled pauses and word fragments. The experimental results demonstrate that the disfluency-based features derived from word fragments and filled pauses are effective relative to evaluating fluent/disfluent speech, especially when combined with prosodic features, e.g., such as speech rate and pauses/silence. Next, we employed an LSTM based framework in order to integrate the disfluency-based and prosodic features with time sequential acoustic features. The experimental evaluation results of those integrated diverse features indicate that time sequential acoustic features contribute to improving the model with disfluency-based and prosodic features when detecting fluent speech, but not when detecting disfluent speech. Furthermore, when detecting disfluent speech, the model without time sequential acoustic features performs best even without word fragments features, but only with filled pauses and prosodic features.