Hossein Sahour


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
GT-NLP at SemEval-2025 Task 11: EmoRationale, Evidence-Based Emotion Detection via Retrieval-Augmented Generation
Daniel Saeedi | Alireza Kheirandish | Sirwe Saeedi | Hossein Sahour | Aliakbar Panahi | Iman Naeeni
Proceedings of the 19th International Workshop on Semantic Evaluation (SemEval-2025)

Emotion detection in multilingual settings presents significant challenges, particularly for low-resource languages where labeled datasets are scarce. To address these limitations, we introduce EmoRationale, a Retrieval-Augmented Generation (RAG) framework designed to enhance explainability and cross-lingual generalization in emotion detection. Our approach combines vector-based retrieval with in-context learning in large language models (LLMs), using semantically relevant examples to enhance classification accuracy and interpretability. Unlike traditional fine-tuning methods, our system provides evidence-based reasoning for its predictions, making emotion detection more transparent and adaptable across diverse linguistic contexts. Experimental results on the SemEval-2025 Task 11 dataset demonstrate that our RAG-based method achieves strong performance in multi-label emotion classification, emotion intensity assessment, and cross-lingual emotion transfer, surpassing conventional models in interpretability while remaining cost-effective.