Punning is a creative way to make conversation enjoyable and literary writing elegant. In this paper, we focus on the task of generating a pun sentence given a pair of homophones. We first find the constraint words supporting the semantic incongruity for a sentence. Then we rewrite the sentence with explicit positive and negative constraints. Our model achieves the state-of-the-art results in both automatic and human evaluations. We further make an error analysis and discuss the challenges for the computational pun models.
One of the most challenging part of recipe generation is to deal with the complex restrictions among the input ingredients. Previous researches simplify the problem by treating the inputs independently and generating recipes containing as much information as possible. In this work, we propose a routing method to dive into the content selection under the internal restrictions. The routing enforced generative model (RGM) can generate appropriate recipes according to the given ingredients and user preferences. Our model yields new state-of-the-art results on the recipe generation task with significant improvements on BLEU, F1 and human evaluation.
In this paper, we explore a new approach for automated chess commentary generation, which aims to generate chess commentary texts in different categories (e.g., description, comparison, planning, etc.). We introduce a neural chess engine into text generation models to help with encoding boards, predicting moves, and analyzing situations. By jointly training the neural chess engine and the generation models for different categories, the models become more effective. We conduct experiments on 5 categories in a benchmark Chess Commentary dataset and achieve inspiring results in both automatic and human evaluations.
Data-to-text generation is very essential and important in machine writing applications. The recent deep learning models, like Recurrent Neural Networks (RNNs), have shown a bright future for relevant text generation tasks. However, rare work has been done for automatic generation of long reviews from user opinions. In this paper, we introduce a deep neural network model to generate long Chinese reviews from aspect-sentiment scores representing users’ opinions. We conduct our study within the framework of encoder-decoder networks, and we propose a hierarchical structure with aligned attention in the Long-Short Term Memory (LSTM) decoder. Experiments show that our model outperforms retrieval based baseline methods, and also beats the sequential generation models in qualitative evaluations.