Hongwei Zeng


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Synthesize, Prompt and Transfer: Zero-shot Conversational Question Generation with Pre-trained Language Model
Hongwei Zeng | Bifan Wei | Jun Liu | Weiping Fu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Conversational question generation aims to generate questions that depend on both context and conversation history. Conventional works utilizing deep learning have shown promising results, but heavily rely on the availability of large-scale annotated conversations. In this paper, we introduce a more realistic and less explored setting, Zero-shot Conversational Question Generation (ZeroCQG), which requires no human-labeled conversations for training. To solve ZeroCQG, we propose a multi-stage knowledge transfer framework, Synthesize, Prompt, and trAnsfer with pRe-Trained lAnguage model (SPARTA) to effectively leverage knowledge from single-turn question generation instances. To validate the zero-shot performance of SPARTA, we conduct extensive experiments on three conversational datasets: CoQA, QuAC, and DoQA by transferring knowledge from three single-turn datasets: MS MARCO, NewsQA, and SQuAD. The experimental results demonstrate the superior performance of our method. Specifically, SPARTA has achieved 14.81 BLEU-4 (88.2% absolute improvement compared to T5) in CoQA with knowledge transferred from SQuAD.