Hongbo Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
ResFormer: All-Time Reservoir Memory for Long Sequence Classification
Hongbo Liu | Jia Xu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Sequence classification is essential in NLP for understanding and categorizing language patterns in tasks like sentiment analysis, intent detection, and topic classification. Transformer-based models, despite achieving state-of-the-art performance, have inherent limitations due to quadratic time and memory complexity, restricting their input length. Although extensive efforts have aimed at reducing computational demands, processing extensive contexts remains challenging. To overcome these limitations, we propose ResFormer, a novel neural network architecture designed to model varying context lengths efficiently through a cascaded methodology. ResFormer integrates an reservoir computing network featuring a nonlinear readout to effectively capture long-term contextual dependencies in linear time. Concurrently, short-term dependencies within sentences are modeled using a conventional Transformer architecture with fixed-length inputs. Experiments demonstrate that ResFormer significantly outperforms baseline models of DeepSeek-Qwen and ModernBERT, delivering an accuracy improvement of up to +22.3% on the EmoryNLP dataset and consistent gains on MultiWOZ, MELD, and IEMOCAP. In addition, ResFormer exhibits reduced memory consumption, underscoring its effectiveness and efficiency in modeling extensive contextual information.
Search
Co-authors
Venues
Fix data