This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HongbinWang
Also published as:
HongBin Wang,
洪彬 王
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Empathetic dialogue assembles emotion understanding, feeling projection, and appropriate response generation. Existing work for empathetic dialogue generation concentrates on the two-party conversation scenario. Multi-party dialogues, however, are pervasive in reality. Furthermore, emotion and sensibility are typically confused; a refined empathy analysis is needed for comprehending fragile and nuanced human feelings. We address these issues by proposing a novel task called Multi-Party Empathetic Dialogue Generation in this study. Additionally, a Static-Dynamic model for Multi-Party Empathetic Dialogue Generation, SDMPED, is introduced as a baseline by exploring the static sensibility and dynamic emotion for the multi-party empathetic dialogue learning, the aspects that help SDMPED achieve the state-of-the-art performance.
Extractive Question Answering (EQA) is one of the most essential tasks in Machine Reading Comprehension (MRC), which can be solved by fine-tuning the span selecting heads of Pre-trained Language Models (PLMs). However, most existing approaches for MRC may perform poorly in the few-shot learning scenario. To solve this issue, we propose a novel framework named Knowledge Enhanced Contrastive Prompt-tuning (KECP). Instead of adding pointer heads to PLMs, we introduce a seminal paradigm for EQA that transforms the task into a non-autoregressive Masked Language Modeling (MLM) generation problem. Simultaneously, rich semantics from the external knowledge base (KB) and the passage context support enhancing the query’s representations. In addition, to boost the performance of PLMs, we jointly train the model by the MLM and contrastive learning objectives. Experiments on multiple benchmarks demonstrate that our method consistently outperforms state-of-the-art approaches in few-shot settings by a large margin.
Knowledge-enhanced Pre-trained Language Model (PLM) has recently received significant attention, which aims to incorporate factual knowledge into PLMs. However, most existing methods modify the internal structures of fixed types of PLMs by stacking complicated modules, and introduce redundant and irrelevant factual knowledge from knowledge bases (KBs). In this paper, to address these problems, we introduce a seminal knowledge prompting paradigm and further propose a knowledge-prompting-based PLM framework KP-PLM. This framework can be flexibly combined with existing mainstream PLMs. Specifically, we first construct a knowledge sub-graph from KBs for each context. Then we design multiple continuous prompts rules and transform the knowledge sub-graph into natural language prompts. To further leverage the factual knowledge from these prompts, we propose two novel knowledge-aware self-supervised tasks including prompt relevance inspection and masked prompt modeling. Extensive experiments on multiple natural language understanding (NLU) tasks show the superiority of KP-PLM over other state-of-the-art methods in both full-resource and low-resource settings. Our source codes will be released upon the acceptance of the paper.
Multimodal named entity recognition (MNER) on social media is a challenging task which aims to extract named entities in free text and incorporate images to classify them into user-defined types. However, the annotation for named entities on social media demands a mount of human efforts. The existing semi-supervised named entity recognition methods focus on the text modal and are utilized to reduce labeling costs in traditional NER. However, the previous methods are not efficient for semi-supervised MNER. Because the MNER task is defined to combine the text information with image one and needs to consider the mismatch between the posted text and image. To fuse the text and image features for MNER effectively under semi-supervised setting, we propose a novel span-based multimodal variational autoencoder (SMVAE) model for semi-supervised MNER. The proposed method exploits modal-specific VAEs to model text and image latent features, and utilizes product-of-experts to acquire multimodal features. In our approach, the implicit relations between labels and multimodal features are modeled by multimodal VAE. Thus, the useful information of unlabeled data can be exploited in our method under semi-supervised setting. Experimental results on two benchmark datasets demonstrate that our approach not only outperforms baselines under supervised setting, but also improves MNER performance with less labeled data than existing semi-supervised methods.
The narrative event prediction aims to predict what happens after a sequence of events, which is essential to modeling sophisticated real-world events. Existing studies focus on mining the inter-events relationships while ignoring how the events happened, which we called circumstances. With our observation, the event circumstances indicate what will happen next. To incorporate event circumstances into the narrative event prediction, we propose the CircEvent, which adopts the two multi-head attention to retrieve circumstances at the local and global levels. We also introduce a regularization of attention weights to leverage the alignment between events and local circumstances. The experimental results demonstrate our CircEvent outperforms existing baselines by 12.2%. The further analysis demonstrates the effectiveness of our multi-head attention modules and regularization.