Hong Han


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
NUS-Emo at SemEval-2024 Task 3: Instruction-Tuning LLM for Multimodal Emotion-Cause Analysis in Conversations
Meng Luo | Han Zhang | Shengqiong Wu | Bobo Li | Hong Han | Hao Fei
Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)

This paper describes the architecture of our system developed for participation in Task 3 of SemEval-2024: Multimodal Emotion-Cause Analysis in Conversations. Our project targets the challenges of subtask 2, dedicated to Multimodal Emotion-Cause Pair Extraction with Emotion Category (MECPE-Cat), and constructs a dual-component system tailored to the unique challenges of this task. We divide the task into two subtasks: emotion recognition in conversation (ERC) and emotion-cause pair extraction (ECPE). To address these subtasks, we capitalize on the abilities of Large Language Models (LLMs), which have consistently demonstrated state-of-the-art performance across various natural language processing tasks and domains. Most importantly, we design an approach of emotion-cause-aware instruction-tuning for LLMs, to enhance the perception of the emotions with their corresponding causal rationales. Our method enables us to adeptly navigate the complexities of MECPE-Cat, achieving an average 34.71% F1 score of the task, and securing the 2nd rank on the leaderboard. The code and metadata to reproduce our experiments are all made publicly available.