Honai Ueoka


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Frustratingly Easy Edit-based Linguistic Steganography with a Masked Language Model
Honai Ueoka | Yugo Murawaki | Sadao Kurohashi
Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

With advances in neural language models, the focus of linguistic steganography has shifted from edit-based approaches to generation-based ones. While the latter’s payload capacity is impressive, generating genuine-looking texts remains challenging. In this paper, we revisit edit-based linguistic steganography, with the idea that a masked language model offers an off-the-shelf solution. The proposed method eliminates painstaking rule construction and has a high payload capacity for an edit-based model. It is also shown to be more secure against automatic detection than a generation-based method while offering better control of the security/payload capacity trade-off.

2020

pdf bib
A System for Worldwide COVID-19 Information Aggregation
Akiko Aizawa | Frederic Bergeron | Junjie Chen | Fei Cheng | Katsuhiko Hayashi | Kentaro Inui | Hiroyoshi Ito | Daisuke Kawahara | Masaru Kitsuregawa | Hirokazu Kiyomaru | Masaki Kobayashi | Takashi Kodama | Sadao Kurohashi | Qianying Liu | Masaki Matsubara | Yusuke Miyao | Atsuyuki Morishima | Yugo Murawaki | Kazumasa Omura | Haiyue Song | Eiichiro Sumita | Shinji Suzuki | Ribeka Tanaka | Yu Tanaka | Masashi Toyoda | Nobuhiro Ueda | Honai Ueoka | Masao Utiyama | Ying Zhong
Proceedings of the 1st Workshop on NLP for COVID-19 (Part 2) at EMNLP 2020

The global pandemic of COVID-19 has made the public pay close attention to related news, covering various domains, such as sanitation, treatment, and effects on education. Meanwhile, the COVID-19 condition is very different among the countries (e.g., policies and development of the epidemic), and thus citizens would be interested in news in foreign countries. We build a system for worldwide COVID-19 information aggregation containing reliable articles from 10 regions in 7 languages sorted by topics. Our reliable COVID-19 related website dataset collected through crowdsourcing ensures the quality of the articles. A neural machine translation module translates articles in other languages into Japanese and English. A BERT-based topic-classifier trained on our article-topic pair dataset helps users find their interested information efficiently by putting articles into different categories.