Hoang Thanh-Tung


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Diffusion Directed Acyclic Transformer for Non-Autoregressive Machine Translation
Quan Nguyen-Tri | Cong Dao Tran | Hoang Thanh-Tung
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Non-autoregressive transformers (NATs) predict entire sequences in parallel to reduce decoding latency, but they often encounter performance challenges due to the multi-modality problem. A recent advancement, the Directed Acyclic Transformer (DAT), addresses this issue by capturing multiple translation modalities to paths in a Directed Acyclic Graph (DAG). However, the collaboration with the latent variable introduced through the Glancing training (GLAT) is crucial for DAT to attain state-of-the-art performance. In this paper, we introduce Diffusion Directed Acyclic Transformer (Diff-DAT), which serves as an alternative to GLAT as a latent variable introduction for DAT. Diff-DAT offers two significant benefits over the previous approach. Firstly, it establishes a stronger alignment between training and inference. Secondly, it facilitates a more flexible tradeoff between quality and latency.

2023

pdf bib
Class based Influence Functions for Error Detection
Thang Nguyen-Duc | Hoang Thanh-Tung | Quan Hung Tran | Dang Huu-Tien | Hieu Nguyen | Anh T. V. Dau | Nghi Bui
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers)

Influence functions (IFs) are a powerful tool for detecting anomalous examples in large scale datasets. However, they are unstable when applied to deep networks. In this paper, we provide an explanation for the instability of IFs and develop a solution to this problem. We show that IFs are unreliable when the two data points belong to two different classes. Our solution leverages class information to improve the stability of IFs.Extensive experiments show that our modification significantly improves the performance and stability of IFs while incurring no additional computational cost.