Hiroko Dodge


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Topic-Based Measures of Conversation for Detecting Mild CognitiveImpairment
Meysam Asgari | Liu Chen | Hiroko Dodge
Proceedings of the First Workshop on Natural Language Processing for Medical Conversations

Conversation is a complex cognitive task that engages multiple aspects of cognitive functions to remember the discussed topics, monitor the semantic and linguistic elements, and recognize others’ emotions. In this paper, we propose a computational method based on the lexical coherence of consecutive utterances to quantify topical variations in semi-structured conversations of older adults with cognitive impairments. Extracting the lexical knowledge of conversational utterances, our method generate a set of novel conversational measures that indicate underlying cognitive deficits among subjects with mild cognitive impairment (MCI). Our preliminary results verifies the utility of the proposed conversation-based measures in distinguishing MCI from healthy controls.