Hiroki Mizokuchi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Towards Safer Operations: An Expert-involved Dataset of High-Pressure Gas Incidents for Preventing Future Failures
Shumpei Inoue | Minh-Tien Nguyen | Hiroki Mizokuchi | Tuan-Anh Nguyen | Huu-Hiep Nguyen | Dung Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

This paper introduces a new IncidentAI dataset for safety prevention. Different from prior corpora that usually contain a single task, our dataset comprises three tasks: named entity recognition, cause-effect extraction, and information retrieval. The dataset is annotated by domain experts who have at least six years of practical experience as high-pressure gas conservation managers. We validate the contribution of the dataset in the scenario of safety prevention. Preliminary results on the three tasks show that NLP techniques are beneficial for analyzing incident reports to prevent future failures. The dataset facilitates future research in NLP and incident management communities. The access to the dataset is also provided (The IncidentAI dataset is available at: https://github.com/Cinnamon/incident-ai-dataset).