This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HiroakiKitano
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Many systems have been developed in the past few years to assist researchers in the discovery of knowledge published as English text, for example in the PubMed database. At the same time, higher level collective knowledge is often published using a graphical notation representing all the entities in a pathway and their interactions. We believe that these pathway visualizations could serve as an effective user interface for knowledge discovery if they can be linked to the text in publications. Since the graphical elements in a Pathway are of a very different nature than their corresponding descriptions in English text, we developed a prototype system called PathText. The goal of PathText is to serve as a bridge between these two different representations. In this paper, we first describe the overall architecture and the interfaces of the PathText system, and then provide some details about the core Text Mining components.
This paper describes unification algorithms for fine-grained massively parallel computers. The algorithms are based on a parallel marker-passing scheme. The marker-passing scheme in our algorithms carry only bit-vectors, address pointers and values. Because of their simplicity, our algorithms can be implemented on various architectures of massively parallel machines without loosing the inherent benefits of parallel computation. Also, we describe two augmentations of unification algorithms such as multiple unification and fuzzy unification. Experimental results indicate that our algorithm attaines more than 500 unification per seconds (for DAGs of average depth of 4) and has a linear time-complexity. This leads to possible implementations of massively parallel natural language parsing with full linguistic analysis.
This paper describes a memory-based machine translation system developed for the Semantic Net- work Array Processor (SNAP). The goal of our work is to develop a scalable and high-performance memory-based machine translation system which utilizes the high degree of parallelism provided by the SNAP machine. We have implemented an experimental machine translation system DMSNAP as a central part of a real-time speech-to-speech dia- logue translation system. It is a SNAP version of the ΦDMDIALOG speech-to-speech translation system. Memory-based natural language processing and syntactic constraint network model has been incorporated using parallel marker-passing which is directly supported from hardware level. Experimental results demonstrate that the parsing of a sentence is done in the order of milliseconds.
This paper describes the parsing scheme in the 𝛷DmDialog speech-to-speech dialog translation system, with special emphasis on the integration of speech and natural language processing. We propose an integrated architecture for parsing speech inputs based on a parallel marker-passing scheme and attaining dynamic participation of knowledge from the phonological-level to the discourse-level. At the phonological level, we employ a stochastic model using a transition matrix and a confusion matrix and markers which carry a probability measure. At a higher level, syntactic/semantic and discourse processing, we integrate a case-based and constraint-based scheme in a consistent manner so that a priori probability and constraints, which reflect linguistic and discourse factors, are provided to the phonological level of processing. A probability/cost-based scheme in our model enables ambiguity resolution at various levels using one uniform principle.