Himanshu Taneja


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
Fine-grained Structure-based News Genre Categorization
Zeyu Dai | Himanshu Taneja | Ruihong Huang
Proceedings of the Workshop Events and Stories in the News 2018

Journalists usually organize and present the contents of a news article following a well-defined structure. In this work, we propose a new task to categorize news articles based on their content presentation structures, which is beneficial for various NLP applications. We first define a small set of news elements considering their functions (e.g., introducing the main story or event, catching the reader’s attention and providing details) in a news story and their writing style (narrative or expository), and then formally define four commonly used news article structures based on their selections and organizations of news elements. We create an annotated dataset for structure-based news genre identification, and finally, we build a predictive model to assess the feasibility of this classification task using structure indicative features.