Hideaki Hayashi


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Text Normalization for Japanese Sentiment Analysis
Risa Kondo | Ayu Teramen | Reon Kajikawa | Koki Horiguchi | Tomoyuki Kajiwara | Takashi Ninomiya | Hideaki Hayashi | Yuta Nakashima | Hajime Nagahara
Proceedings of the Tenth Workshop on Noisy and User-generated Text

We manually normalize noisy Japanese expressions on social networking services (SNS) to improve the performance of sentiment polarity classification.Despite advances in pre-trained language models, informal expressions found in social media still plague natural language processing.In this study, we analyzed 6,000 posts from a sentiment analysis corpus for Japanese SNS text, and constructed a text normalization taxonomy consisting of 33 types of editing operations.Text normalization according to our taxonomy significantly improved the performance of BERT-based sentiment analysis in Japanese.Detailed analysis reveals that most types of editing operations each contribute to improve the performance of sentiment analysis.