This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Heung YeungShum
Also published as:
Heung-Yeung Shum
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
One of the most important tasks in quantitative investment research is mining new alphas (effective trading signals or factors). Traditional alpha mining methods, either hand-crafted factor synthesis or algorithmic factor mining (e.g., search with genetic programming), have inherent limitations, especially in implementing the ideas of quant researchers. In this work, we propose a new alpha mining paradigm by introducing human-AI interaction, and a novel prompt engineering algorithmic framework to implement this paradigm by leveraging the power of large language models. Moreover, we develop Alpha-GPT, a new interactive alpha mining system framework that provides a heuristic way to “understand” the ideas of quant researchers and outputs creative, insightful, and effective alphas. We demonstrate the effectiveness and advantage of Alpha-GPT via a number of alpha mining experiments. In particular, we evaluated Alpha-GPT’s performance in the WorldQuant International Quant Championship, where it demonstrated results comparable to those of top-performing human participants, ranking among top-10 over 41000 teams worldwide. These findings suggest Alpha-GPT’s significant potential in generating highly effective alphas that may surpass human capabilities in quantitative investment strategies.
We propose novel attention architectures, Multi-matrix Factorization Attention (MFA) and MFA-Key-Reuse (MFA-KR). Existing variants for standard Multi-Head Attention (MHA), including SOTA methods like MLA, fail to maintain as strong performance under stringent Key-Value cache (KV cache) constraints. MFA enhances model capacity by efficiently scaling up both the number and dimension of attention heads through low-rank matrix factorization in the Query-Key (QK) circuit. Extending MFA, MFA-KR further reduces memory requirements by repurposing the key cache as value through value projection re-parameterization. MFA’s design enables strong model capacity when working under tight KV cache budget, while MFA-KR is suitable for even harsher KV cache limits with minor performance trade-off. Notably, in our extensive and large-scale experiments, the proposed architecture outperforms MLA and performs comparably to MHA, while reducing KV cache usage by up to 56% and 93.7%, respectively.
This article describes the development of Microsoft XiaoIce, the most popular social chatbot in the world. XiaoIce is uniquely designed as an artifical intelligence companion with an emotional connection to satisfy the human need for communication, affection, and social belonging. We take into account both intelligent quotient and emotional quotient in system design, cast human–machine social chat as decision-making over Markov Decision Processes, and optimize XiaoIce for long-term user engagement, measured in expected Conversation-turns Per Session (CPS). We detail the system architecture and key components, including dialogue manager, core chat, skills, and an empathetic computing module. We show how XiaoIce dynamically recognizes human feelings and states, understands user intent, and responds to user needs throughout long conversations. Since the release in 2014, XiaoIce has communicated with over 660 million active users and succeeded in establishing long-term relationships with many of them. Analysis of large-scale online logs shows that XiaoIce has achieved an average CPS of 23, which is significantly higher than that of other chatbots and even human conversations.