Hesham Al-Bataineh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
NSURL-2019 Task 8: Semantic Question Similarity in Arabic
Haitham Seelawi | Ahmad Mustafa | Hesham Al-Bataineh | Wael Farhan | Hussein T. Al-Natsheh
Proceedings of the First International Workshop on NLP Solutions for Under Resourced Languages (NSURL 2019) co-located with ICNLSP 2019 - Short Papers

pdf bib
Mawdoo3 AI at MADAR Shared Task: Arabic Fine-Grained Dialect Identification with Ensemble Learning
Ahmad Ragab | Haitham Seelawi | Mostafa Samir | Abdelrahman Mattar | Hesham Al-Bataineh | Mohammad Zaghloul | Ahmad Mustafa | Bashar Talafha | Abed Alhakim Freihat | Hussein Al-Natsheh
Proceedings of the Fourth Arabic Natural Language Processing Workshop

In this paper we discuss several models we used to classify 25 city-level Arabic dialects in addition to Modern Standard Arabic (MSA) as part of MADAR shared task (sub-task 1). We propose an ensemble model of a group of experimentally designed best performing classifiers on a various set of features. Our system achieves an accuracy of 69.3% macro F1-score with an improvement of 1.4% accuracy from the baseline model on the DEV dataset. Our best run submitted model ranked as third out of 19 participating teams on the TEST dataset with only 0.12% macro F1-score behind the top ranked system.