Hengyu An


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
IPIGuard: A Novel Tool Dependency Graph-Based Defense Against Indirect Prompt Injection in LLM Agents
Hengyu An | Jinghuai Zhang | Tianyu Du | Chunyi Zhou | Qingming Li | Tao Lin | Shouling Ji
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language model (LLM) agents are widely deployed in real-world applications, where they leverage tools to retrieve and manipulate external data for complex tasks. However, when interacting with untrusted data sources (e.g., fetching information from public websites), tool responses may contain injected instructions that covertly influence agent behaviors and lead to malicious outcomes, a threat referred to as Indirect\ Prompt\ Injection (IPI). Existing defenses typically rely on advanced prompting strategies or auxiliary detection models. While these methods have demonstrated some effectiveness, they fundamentally rely on assumptions about the model’s inherent security, which lacks structural constraints on agent behaviors. As a result, agents still retain unrestricted access to tool invocations, leaving them vulnerable to stronger attack vectors that can bypass the security guardrails of the model. To\ prevent\ malicious\ tool\ invocations\ at\ the\ source, we propose a novel defensive task execution paradigm, called IPIGuard, which models the agents’ task execution process as a traversal over a planned Tool\ Dependency\ Graph (TDG). By explicitly decoupling action planning from interaction with external data, IPIGuard significantly reduces unintended tool invocations triggered by injected instructions, thereby enhancing robustness against IPI attacks. Experiments on the AgentDojo benchmark show that IPIGuard achieves a superior balance between effectiveness and robustness, paving the way for the development of safer agentic systems in dynamic environments.