Hengliang Luo


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Open-Set Living Need Prediction with Large Language Models
Xiaochong Lan | Jie Feng | Yizhou Sun | Chen Gao | Jiahuan Lei | Xinlei Shi | Hengliang Luo | Yong Li
Findings of the Association for Computational Linguistics: ACL 2025

Living needs are the needs people generate in their daily lives for survival and well-being. On life service platforms like Meituan, user purchases are driven by living needs, making accurate living need predictions crucial for personalized service recommendations. Traditional approaches treat this prediction as a closed-set classification problem, severely limiting their ability to capture the diversity and complexity of living needs. In this work, we redefine living need prediction as an open-set classification problem and propose PIGEON, a novel system leveraging large language models (LLMs) for unrestricted need prediction. PIGEON first employs a behavior-aware record retriever to help LLMs understand user preferences, then incorporates Maslow’s hierarchy of needs to align predictions with human living needs. For evaluation and application, we design a recall module based on a fine-tuned text embedding model that links flexible need descriptions to appropriate life services. Extensive experiments on real-world datasets demonstrate that PIGEON significantly outperforms closed-set approaches on need-based life service recall by an average of 19.37%. Human evaluation validates the reasonableness and specificity of our predictions. Additionally, we employ instruction tuning to enable smaller LLMs to achieve competitive performance, supporting practical deployment.