Heng-Yi Liu


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Neuron-Level Differentiation of Memorization and Generalization in Large Language Models
Ko-Wei Huang | Yi-Fu Fu | Ching-Yu Tsai | Yu-Chieh Tu | Tzu-ling Cheng | Cheng-Yu Lin | Yi-Ting Yang | Heng-Yi Liu | Keng-Te Liao | Da-Cheng Juan | Shou-De Lin
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

We investigate how Large Language Models (LLMs) distinguish between memorization and generalization at the neuron level. Through carefully designed tasks, we identify distinct neuron subsets responsible for each behavior. Experiments on both a GPT-2 model trained from scratch and a pretrained LLaMA-3.2 model fine-tuned with LoRA show consistent neuron-level specialization. We further demonstrate that inference-time interventions on these neurons can steer the model’s behavior toward memorization or generalization. To assess robustness, we evaluate intra-task and inter-task consistency, confirming that these neuron-behavior associations reflect generalizable patterns rather than dataset-specific artifacts. Our findings reveal modular structure in LLMs and enable controlling memorization and generalization behaviors at inference time.