Hemali Majithia


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2005

pdf bib
Rapid Ramp-up for Statistical Machine Translation: Minimal Training for Maximal Coverage
Hemali Majithia | Philip Rennart | Evelyne Tzoukermann
Proceedings of Machine Translation Summit X: Posters

This paper investigates optimal ways to get maximal coverage from minimal input training corpus. In effect, it seems antagonistic to think of minimal input training with a statistical machine translation system. Since statistics work well with repetition and thus capture well highly occurring words, one challenge has been to figure out the optimal number of “new” words that the system needs to be appropriately trained. Additionally, the goal is to minimize the human translation time for training a new language. In order to account for rapid ramp-up translation, we ran several experiments to figure out the minimal amount of data to obtain optimal translation results.