Helene Jacquenet


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Introducing RezoJDM16k: a French KnowledgeGraph DataSet for Link Prediction
Mehdi Mirzapour | Waleed Ragheb | Mohammad Javad Saeedizade | Kevin Cousot | Helene Jacquenet | Lawrence Carbon | Mathieu Lafourcade
Proceedings of the Thirteenth Language Resources and Evaluation Conference

Knowledge graphs applications, in industry and academia, motivate substantial research directions towards large-scale information extraction from various types of resources. Nowadays, most of the available knowledge graphs are either in English or multilingual. In this paper, we introduce RezoJDM16k, a French knowledge graph dataset based on RezoJDM. With 16k nodes, 832k triplets, and 53 relation types, RezoJDM16k can be employed in many NLP downstream tasks for the French language such as machine translation, question-answering, and recommendation systems. Moreover, we provide strong knowledge graph embedding baselines that are used in link prediction tasks for future benchmarking. Compared to the state-of-the-art English knowledge graph datasets used in link prediction, RezoJDM16k shows a similar promising predictive behavior.