Helena Sobol


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
NLPR@SRPOL at SemEval-2019 Task 6 and Task 5: Linguistically enhanced deep learning offensive sentence classifier
Alessandro Seganti | Helena Sobol | Iryna Orlova | Hannam Kim | Jakub Staniszewski | Tymoteusz Krumholc | Krystian Koziel
Proceedings of the 13th International Workshop on Semantic Evaluation

The paper presents a system developed for the SemEval-2019 competition Task 5 hat- Eval Basile et al. (2019) (team name: LU Team) and Task 6 OffensEval Zampieri et al. (2019b) (team name: NLPR@SRPOL), where we achieved 2nd position in Subtask C. The system combines in an ensemble several models (LSTM, Transformer, OpenAI’s GPT, Random forest, SVM) with various embeddings (custom, ELMo, fastText, Universal Encoder) together with additional linguistic features (number of blacklisted words, special characters, etc.). The system works with a multi-tier blacklist and a large corpus of crawled data, annotated for general offensiveness. In the paper we do an extensive analysis of our results and show how the combination of features and embedding affect the performance of the models.