Héctor Pérez-Urbina


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Comprehensive Framework to Operationalize Social Stereotypes for Responsible AI Evaluations
Aida Mostafazadeh Davani | Sunipa Dev | Héctor Pérez-Urbina | Vinodkumar Prabhakaran
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Societal stereotypes are at the center of a myriad of responsible AI interventions targeted at reducing the generation and propagation of potentially harmful outcomes. While these efforts are much needed, they tend to be fragmented and often address different parts of the issue without adopting a unified or holistic approach to social stereotypes and how they impact various parts of the machine learning pipeline. As a result, current interventions fail to capitalize on the underlying mechanisms that are common across different types of stereotypes, and to anchor on particular aspects that are relevant in certain cases. In this paper, we draw on social psychological research and build on NLP data and methods, to propose a unified framework to operationalize stereotypes in generative AI evaluations. Our framework identifies key components of stereotypes that are crucial in AI evaluation, including the target group, associated attribute, relationship characteristics, perceiving group, and context. We also provide considerations and recommendations for its responsible use.