He Geng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
VLA-Mark: A cross modal watermark for large vision-language alignment models
Shuliang Liu | Zheng Qi | Jesse Jiaxi Xu | Yibo Yan | Junyan Zhang | He Geng | Aiwei Liu | Peijie Jiang | Jia Liu | Yik-Cheung Tam | Xuming Hu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Vision-language models demand watermarking solutions that protect intellectual property without compromising multimodal coherence. Existing text watermarking methods disrupt visual-textual alignment through biased token selection and static strategies, leaving semantic-critical concepts vulnerable. We propose VLA-Mark, a vision-aligned framework that embeds detectable watermarks while preserving semantic fidelity through cross-modal coordination. Our approach integrates multiscale visual-textual alignment metrics, combining localized patch affinity, global semantic coherence, and contextual attention patterns, to guide watermark injection without model retraining. An entropy-sensitive mechanism dynamically balances watermark strength and semantic preservation, prioritizing visual grounding during low-uncertainty generation phases. Experiments show 7.4% lower PPL and 26.6% higher BLEU than conventional methods, with near-perfect detection (98.8% AUC). The framework demonstrates 96.1% attack resilience against attacks such as paraphrasing and synonym substitution, while maintaining text-visual consistency, establishing new standards for quality-preserving multimodal watermarking.

pdf bib
A Survey on Proactive Defense Strategies Against Misinformation in Large Language Models
Shuliang Liu | Hongyi Liu | Aiwei Liu | Duan Bingchen | Zheng Qi | Yibo Yan | He Geng | Peijie Jiang | Jia Liu | Xuming Hu
Findings of the Association for Computational Linguistics: ACL 2025

The widespread deployment of large language models (LLMs) across critical domains has amplified the societal risks posed by algorithmically generated misinformation. Unlike traditional false content, LLM-generated misinformation can be self-reinforcing, highly plausible, and capable of rapid propagation across multiple languages, which traditional detection methods fail to mitigate effectively. This paper introduces a proactive defense paradigm, shifting from passive post hoc detection to anticipatory mitigation strategies. We propose a Three Pillars framework: (1) Knowledge Credibility, fortifying the integrity of training and deployed data; (2) Inference Reliability, embedding self-corrective mechanisms during reasoning; and (3) Input Robustness, enhancing the resilience of model interfaces against adversarial attacks. Through a comprehensive survey of existing techniques and a comparative meta-analysis, we demonstrate that proactive defense strategies offer up to 63% improvement over conventional methods in misinformation prevention, despite non-trivial computational overhead and generalization challenges. We argue that future research should focus on co-designing robust knowledge foundations, reasoning certification, and attack-resistant interfaces to ensure LLMs can effectively counter misinformation across varied domains.