He-Feng Yun


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Learning-From-Mistakes Prompting for Indigenous Language Translation
You Cheng Liao | Chen-Jui Yu | Chi-Yi Lin | He-Feng Yun | Yen-Hsiang Wang | Hsiao-Min Li | Yao-Chung Fan
Proceedings of the Seventh Workshop on Technologies for Machine Translation of Low-Resource Languages (LoResMT 2024)

Using large language models, this paper presents techniques to improve extremely low-resourced indigenous language translations. Our approaches are grounded in the use of (1) the presence of a datastore consisting of a limited number of parallel translation examples, (2) the inherent capabilities of LLMs like GPT-3.5, and (3) a word-level translation dictionary. We harness the potential of LLMs and in-context learning techniques in such a setting for using LLM as universal translators for extremely low-resourced languages. Our methodology hinges on utilizing LLMs as language compilers for selected language pairs, hypothesizing that they could internalize syntactic structures to facilitate accurate translation. We introduce three techniques: KNN-Prompting with Retrieved Prompting Context, Chain-of-Thought Prompting, and Learning-from-Mistakes Prompting, with the last method addressing past errors. The evaluation results suggest that, even with limited corpora, LLMs, when paired with proper prompting, can effectively translate extremely low-resource languages.