Hawraa Taher


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Arabic Dialects Identification for All Arabic countries
Ahmed Aliwy | Hawraa Taher | Zena AboAltaheen
Proceedings of the Fifth Arabic Natural Language Processing Workshop

Arabic dialects are among of three main variant of Arabic language (Classical Arabic, modern standard Arabic and dialectal Arabic). It has many variants according to the country, city (provinces) or town. In this paper, several techniques with multiple algorithms are applied for Arabic dialects identification starting from removing noise till classification task using all Arabic countries as 21 classes. Three types of classifiers (Naïve Bayes, Logistic Regression, and Decision Tree) are combined using voting with two different methodologies. Also clustering technique is used for decreasing the noise that result from the existing of MSA tweets in the data set for training phase. The results of f-measure were 27.17, 41.34 and 52.38 for first methodology without clustering, second methodology without clustering, and second methodology with clustering, the used data set is NADI shared task data set.