This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Haukur BarriSímonarson
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Automatic spell and grammar checking can be done using various system architectures, and large language models have recently been used to solve the task with promising results. Here we describe a new method of creating test data to measure the performance of spell and grammar checkers, including large language models. Three types of test data represent different approaches to evaluation, from basic error detection to error correction with natural language explanations of the corrections made and error severity scores, which is the main novelty of this approach. These additions are especially useful when evaluating large language models. We present a spell and grammar checking test set for Icelandic in which the described approach is applied. The data consists of whole texts instead of discrete sentences, which facilitates evaluating context awareness of models. The resulting test set can be used to compare different spell and grammar checkers and is published under permissive licenses.
We train several language models for Icelandic, including IceBERT, that achieve state-of-the-art performance in a variety of downstream tasks, including part-of-speech tagging, named entity recognition, grammatical error detection and constituency parsing. To train the models we introduce a new corpus of Icelandic text, the Icelandic Common Crawl Corpus (IC3), a collection of high quality texts found online by targeting the Icelandic top-level-domain .is. Several other public data sources are also collected for a total of 16GB of Icelandic text. To enhance the evaluation of model performance and to raise the bar in baselines for Icelandic, we manually translate and adapt the WinoGrande commonsense reasoning dataset. Through these efforts we demonstrate that a properly cleaned crawled corpus is sufficient to achieve state-of-the-art results in NLP applications for low to medium resource languages, by comparison with models trained on a curated corpus. We further show that initializing models using existing multilingual models can lead to state-of-the-art results for some downstream tasks.
We present Miðeind’s submission for the English→Icelandic and Icelandic→English subsets of the 2021 WMT news translation task. Transformer-base models are trained for translation on parallel data to generate backtranslations teratively. A pretrained mBART-25 model is then adapted for translation using parallel data as well as the last backtranslation iteration. This adapted pretrained model is then used to re-generate backtranslations, and the training of the adapted model is continued.