This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HatemMousselly-Sergieh
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
An essential step in FrameNet Semantic Role Labeling is the Frame Identification (FrameId) task, which aims at disambiguating a situation around a predicate. Whilst current FrameId methods rely on textual representations only, we hypothesize that FrameId can profit from a richer understanding of the situational context. Such contextual information can be obtained from common sense knowledge, which is more present in images than in text. In this paper, we extend a state-of-the-art FrameId system in order to effectively leverage multimodal representations. We conduct a comprehensive evaluation on the English FrameNet and its German counterpart SALSA. Our analysis shows that for the German data, textual representations are still competitive with multimodal ones. However on the English data, our multimodal FrameId approach outperforms its unimodal counterpart, setting a new state of the art. Its benefits are particularly apparent in dealing with ambiguous and rare instances, the main source of errors of current systems. For research purposes, we release (a) the implementation of our system, (b) our evaluation splits for SALSA 2.0, and (c) the embeddings for synsets and IMAGINED words.
Current methods for knowledge graph (KG) representation learning focus solely on the structure of the KG and do not exploit any kind of external information, such as visual and linguistic information corresponding to the KG entities. In this paper, we propose a multimodal translation-based approach that defines the energy of a KG triple as the sum of sub-energy functions that leverage both multimodal (visual and linguistic) and structural KG representations. Next, a ranking-based loss is minimized using a simple neural network architecture. Moreover, we introduce a new large-scale dataset for multimodal KG representation learning. We compared the performance of our approach to other baselines on two standard tasks, namely knowledge graph completion and triple classification, using our as well as the WN9-IMG dataset. The results demonstrate that our approach outperforms all baselines on both tasks and datasets.
Automatic completion of frame-to-frame (F2F) relations in the FrameNet (FN) hierarchy has received little attention, although they incorporate meta-level commonsense knowledge and are used in downstream approaches. We address the problem of sparsely annotated F2F relations. First, we examine whether the manually defined F2F relations emerge from text by learning text-based frame embeddings. Our analysis reveals insights about the difficulty of reconstructing F2F relations purely from text. Second, we present different systems for predicting F2F relations; our best-performing one uses the FN hierarchy to train on and to ground embeddings in. A comparison of systems and embeddings exposes the crucial influence of knowledge-based embeddings to a system’s performance in predicting F2F relations.