Hasan Tanvir


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
EstBERT: A Pretrained Language-Specific BERT for Estonian
Hasan Tanvir | Claudia Kittask | Sandra Eiche | Kairit Sirts
Proceedings of the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa)

This paper presents EstBERT, a large pretrained transformer-based language-specific BERT model for Estonian. Recent work has evaluated multilingual BERT models on Estonian tasks and found them to outperform the baselines. Still, based on existing studies on other languages, a language-specific BERT model is expected to improve over the multilingual ones. We first describe the EstBERT pretraining process and then present the models’ results based on the finetuned EstBERT for multiple NLP tasks, including POS and morphological tagging, dependency parsing, named entity recognition and text classification. The evaluation results show that the models based on EstBERT outperform multilingual BERT models on five tasks out of seven, providing further evidence towards a view that training language-specific BERT models are still useful, even when multilingual models are available.