Harshit Nigam


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
An Interactive Co-Pilot for Accelerated Research Ideation
Harshit Nigam | Manasi Patwardhan | Lovekesh Vig | Gautam Shroff
Proceedings of the Third Workshop on Bridging Human--Computer Interaction and Natural Language Processing

In the realm of research support tools, there exists a notable void in resources tailored specifically for aiding researchers during the crucial ideation phase of the research life-cycle. We address this gap by introducing ‘Acceleron’, a ‘Co-Pilot’ for researchers, designed specifically to accelerate the ideation phase of the research life-cycle. Leveraging the reasoning and domain-specific skills of Large Language Models (LLMs) within an agent-based architecture with distinct personas, Acceleron aids researchers through the formulation of a comprehensive research proposals. It emulates the ideation process, engaging researchers in an interactive fashion to validate the novelty of the proposal and generate plausible set-of hypotheses. Notably, it addresses challenges inherent in LLMs, such as hallucinations, implements a two-stage aspect-based retrieval to manage precision-recall trade-offs, and tackles issues of unanswerability. Our observations and end-user evaluations illustrate the efficacy of Acceleron as an enhancer of researcher’s productivity.

2023

pdf bib
Adapt and Decompose: Efficient Generalization of Text-to-SQL via Domain Adapted Least-To-Most Prompting
Aseem Arora | Shabbirhussain Bhaisaheb | Harshit Nigam | Manasi Patwardhan | Lovekesh Vig | Gautam Shroff
Proceedings of the 1st GenBench Workshop on (Benchmarking) Generalisation in NLP

Cross-domain and cross-compositional generalization of Text-to-SQL semantic parsing is a challenging task. Existing Large Language Model (LLM) based solutions rely on inference-time retrieval of few-shot exemplars from the training set to synthesize a run-time prompt for each Natural Language (NL) test query. In contrast, we devise an algorithm which performs offline sampling of a minimal set-of few-shots from the training data, with complete coverage of SQL clauses, operators and functions, and maximal domain coverage within the allowed token length. This allows for synthesis of a fixed Generic Prompt (GP), with a diverse set-of exemplars common across NL test queries, avoiding expensive test time exemplar retrieval. We further auto-adapt the GP to the target database domain (DA-GP), to better handle cross-domain generalization; followed by a decomposed Least-To-Most-Prompting (LTMP-DA-GP) to handle cross-compositional generalization. The synthesis of LTMP-DA-GP is an offline task, to be performed one-time per new database with minimal human intervention. Our approach demonstrates superior performance on the KaggleDBQA dataset, designed to evaluate generalizability for the Text-to-SQL task. We further showcase consistent performance improvement of LTMP-DA-GP over GP, across LLMs and databases of KaggleDBQA, highlighting the efficacy and model agnostic benefits of our prompt based adapt and decompose approach.