Harsh Nishant Lalai


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
Harsh Nishant Lalai | Aashish Anantha Ramakrishnan | Raj Sanjay Shah | Dongwon Lee
Findings of the Association for Computational Linguistics: NAACL 2025

With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques through a comprehensive survey of the research literature. Our work has two key advantages: (1) We analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, and watermarking addition and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research protecting text authorship. This extensive coverage and detailed analysis sets our work apart, outlining the evolving landscape of text watermarking in Language Models.