Harikrishna Narasimhan


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Regression Aware Inference with LLMs
Michal Lukasik | Harikrishna Narasimhan | Aditya Krishna Menon | Felix Yu | Sanjiv Kumar
Findings of the Association for Computational Linguistics: EMNLP 2024

Large language models (LLMs) have shown strong results on a range of applications, including regression and scoring tasks.Typically, one obtains outputs from an LLM via autoregressive sampling from the model’s output distribution. We show that this inference strategy can be sub-optimal for common regression and scoring evaluation metrics. As a remedy, we build on prior work on Minimum Bayes Risk decoding,and propose alternate inference strategies that estimate the Bayes-optimal solution for regression and scoring metrics in closed-form from sampled responses.We show that our proposal significantly improves over baselines across datasets and models.