This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
HaoyuKuang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We introduce AI-Press, an automated news drafting and polishing system based on multi-agent collaboration and Retrieval-Augmented Generation. We develop a feedback simulation system that generates public responses considering demographic distributions. Demo link: https://youtu.be/TmjfJrbzaRU
Large language models (LLMs) are increasingly leveraged to empower autonomous agents to simulate human beings in various fields of behavioral research. However, evaluating their capacity to navigate complex social interactions remains a challenge. Previous studies face limitations due to insufficient scenario diversity, complexity, and a single-perspective focus. To this end, we introduce AgentSense: Benchmarking Social Intelligence of Language Agents through Interactive Scenarios. Drawing on Dramaturgical Theory, AgentSense employs a bottom-up approach to create 1,225 diverse social scenarios constructed from extensive scripts. We evaluate LLM-driven agents through multi-turn interactions, emphasizing both goal completion and implicit reasoning. We analyze goals using ERG theory and conduct comprehensive experiments. Our findings highlight that LLMs struggle with goals in complex social scenarios, especially high-level growth needs, and even GPT-4o requires improvement in private information reasoning.
The growth of social media, characterized by its multimodal nature, has led to the emergence of diverse phenomena and challenges, which calls for an effective approach to uniformly solve automated tasks. The powerful Large Vision Language Models make it possible to handle a variety of tasks simultaneously, but even with carefully designed prompting methods, the general domain models often fall short in aligning with the unique speaking style and context of social media tasks. In this paper, we introduce a Large Vision Language Model for Social Media Processing (SoMeLVLM), which is a cognitive framework equipped with five key capabilities including knowledge & comprehension, application, analysis, evaluation, and creation. SoMeLVLM is designed to understand and generate realistic social media behavior. We have developed a 654k multimodal social media instruction-tuning dataset to support our cognitive framework and fine-tune our model. Our experiments demonstrate that SoMeLVLM achieves state-of-the-art performance in multiple social media tasks. Further analysis shows its significant advantages over baselines in terms of cognitive abilities.
Representation learning on graph has been demonstrated to be a powerful tool for solving real-world problems. Text-attributed graph carries both semantic and structural information among different types of graphs. Existing works have paved the way for knowledge extraction of this type of data by leveraging language models or graph neural networks or combination of them. However, these works suffer from issues like underutilization of relationships between nodes or words or unaffordable memory cost. In this paper, we propose a Node Representation Update Pre-training Architecture based on Co-modeling Text and Graph (NRUP). In NRUP, we construct a hierarchical text-attributed graph that incorporates both original nodes and word nodes. Meanwhile, we apply four self-supervised tasks for different level of constructed graph. We further design the pre-training framework to update the features of nodes during training epochs. We conduct the experiment on the benchmark dataset ogbn-arxiv. Our method achieves outperformance compared to baselines, fully demonstrating its validity and generalization.