Haoxing Wen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
CogAtom: From Cognitive Atoms to Olympiad-level Mathematical Reasoning in Large Language Models
Zhuofan Chen | Jiyuan He | Yichi Zhang | Xing Hu | Haoxing Wen | Jun Bai | Wenge Rong
Findings of the Association for Computational Linguistics: EMNLP 2025

Mathematical reasoning poses significant challenges for Large Language Models (LLMs) due to its demand for multi-step reasoning and abstract conceptual integration. While recent test-time scaling techniques rely heavily on high-quality, challenging problems, the scarcity of Olympiad-level math problems remains a bottleneck. We introduce CogAtom, a novel cognitive atom-based framework for synthesizing mathematically rigorous and cognitively diverse problems. Unlike prior approaches, CogAtom models problem construction as a process of selecting and recombining fundamental reasoning units, cognitive atoms, extracted from human-authored solutions. A diversity-promoting random walk algorithm enables exploration of the cognitive atom space, while a constraint-based recombination mechanism ensures logical soundness and structural validity. The combinatorial nature of the graph structure provides a near-infinite space of reasoning paths, and the walk algorithm systematically explores this space to achieve large-scale synthesis of high-quality problems; meanwhile, by controlling the number of cognitive atoms, we can precisely adjust problem difficulty, ensuring diversity, scalability, and controllability of the generated problems. Experimental results demonstrate that CogAtom outperforms existing methods in accuracy, reasoning depth, and diversity, generating problems that closely match the difficulty of AIME while exceeding it in structural variation. Our work offers a cognitively grounded pathway toward scalable, high-quality math problem generation.Our code is publicly available at https://github.com/Icarus-1111/CogAtom.